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Abstract

While there has been a growing interest in the problem of
learning Bayesian networks from data, no technique exists
for learning or revising Bayesian networks with hidden vari-
ables (i.e. variables not represented in the data), that has
been shown to be e�cient, e�ective, and scalable through
evaluation on real data. The few techniques that exist for
revising such networks perform a blind search through a
large space of revisions, and are therefore computationally
expensive. This paper presents Banner, a technique for
using data to revise a given Bayesian network with noisy-or
and noisy-and nodes, to improve its classi�cation accuracy.
The initial network can be derived directly from a logical
theory expressed as propositional rules. Banner can revise
networks with hidden variables, and add hidden variables
when necessary. Unlike previous approaches, Banner em-
ploys mechanisms similar to logical theory re�nement tech-
niques for using the data to focus the search for e�ective
modi�cations. Experiments on real-world problems in the
domain of molecular biology demonstrate thatBanner can
e�ectively revise fairly large networks to signi�cantly im-
prove their accuracies.

1 Introduction

Bayesian networks have become the most popular ap-
proach to uncertain reasoning due to their precise
probabilistic semantics as well their success in practi-
cal applications. In an attempt to automate their con-
struction, induction of Bayes nets has become a topic
of increasing interest. A number of learning methods
have been developed for the case where all relevant
variables are observable (Heckerman, 1995). Param-
eter learning methods for networks with hidden vari-

ables (variables not represented in the data) have also
been developed (Russell, Binder, Koller, & Kanazawa,
1995; Thiesson, 1995). However, learning both the
structure and the parameters of a Bayesian network
with hidden variables remains a problem. Many of
the existing methods can be adapted to discover hid-
den variables, but only by conducting extensive search

that is impractical for most problems. A recent devel-
opment isMS-EM (Friedman, 1997), which learns the
structure of a network with hidden variables; however,
it requires specifying the number of hidden variables
and has not been tested on real data.

As demonstrated by theory re�nement research on
rule-bases, using empirical data to revise an initial im-
perfect knowledge base can signi�cantly improve per-
formance over induction from scratch (Opitz & Shav-
lik, 1993; Ourston & Mooney, 1994; Towell & Shav-
lik, 1994; Mahoney & Mooney, 1994; Brunk & Paz-
zani, 1995). A few techniques have been developed
for revising Bayesian networks (Lam & Bacchus, 1994;
Buntine, 1991); however, they do not handle hidden
variables. Many existing Bayes-net induction meth-
ods could be adapted to revision, but only by examin-
ing all possible individual modi�cations. By contrast,
rule-revision systems use classi�cation errors on the
training data to propose speci�c modi�cations rather
than blindly examining all possible options. The result
is an e�cient, directed revision process.

We have developed a technique, Banner, for re�n-
ing Bayesian networks with hidden variables that, like
rule-re�nement algorithms, uses the data to focus the
search for e�ective modi�cations. Banner's goal is to
improve the accuracy of an initial network for a spe-
ci�c inference task by modifying both its parameters
and structure, including adding new hidden variables.
Although Bayesian networks can simultaneously sup-
port many types of inference, training directly for
the desired classi�cation task results in better perfor-
mance (Friedman & Goldszmidt, 1996). Since gen-
eral Bayesian networks are impractical for many large
problems because the number of parameters grows ex-
ponentially in the fan-in of a node, we focus on net-
works with noisy-or and noisy-and nodes, specialized
models that require only a linear number of param-



eters (Pearl, 1988; Pradhan, Provan, Middleton, &
Henrion, 1994). Since these models are close to logical
functions, they also allow a rule-base to be used as an
initial theory by mapping the rules to a network in the
obvious way. Existing results show that the accuracy
of rule bases can be dramatically improved by mapping
them to a representation that provides numerical sum-
ming of evidence (Towell & Shavlik, 1994; Mahoney
& Mooney, 1994). However, the neural networks or
certainty-factor rules employed in these results do not
provide an interpretable knowledge base with parame-
ters that have a precise semantics. An important goal
of theory re�nement is to provide interpretable knowl-
edge, and we believe Bayes nets are preferable in this
regard.

Experimental evaluation of Bayes net learning has
largely been conducted on arti�cial data and not ade-
quately compared to other methods on real problems
(exceptions include Provan and Singh (1994), Fried-
man and Goldszmidt (1996)), and we know of no
Bayes-net results on revising real knowledge bases to
�t actual data. We have evaluated Banner on several
realistic problems used to test other theory re�nement
systems, obtaining performance competitive with the
current best results while maintaining the advantages
of a Bayes-net representation. The remainder of the
paper presents an overview of Banner's learning al-
gorithm and the promising results of this evaluation.

2 Re�nement Algorithm

As in general in theory re�nement, the goal is to min-
imally modify the initial theory to make it consistent
with the available training data. Taking the standard
approach, Banner employs one procedure to revise
the parameters of a network and another to revise the
structure. First, the parameters are revised to im-
prove classi�cation accuracy. If the resulting network
does not adequately �t the training data, the struc-
ture of the network is modi�ed and the parameters
are retrained. This process repeats until it is deter-
mined that additional training results in over-�tting.1

In this paper, we focus on structure revision. Our cur-
rent implementation includes two parameter revision
algorithms, Banner-Pr (Ramachandran & Mooney,
1996) and C-APN (based on (Russell et al., 1995)),
which use di�erent forms of gradient descent. Ra-
machandran (1998) presents further details.

1The parameter revision component uses 10-fold inter-
nal cross-validation on the training set to determine when
to stop (Mitchell, 1997).

Structure revision exploits the idea that networks with
noisy-or/and nodes are similar to logical theories and
therefore techniques used to revise rule bases are use-
ful. These methods attribute classi�cation errors on
particular examples to speci�c portions of the theory
and directly construct revisions to handle the mis-
classi�ed cases. Most logical re�nement systems use
abduction to diagnose faults (Mooney, 1997). Since
Bayesian networks place no restrictions on the direc-
tion of inference, abduction can be performed using the
standard inference algorithms. In addition, leak nodes

(Pradhan et al., 1994) provide a way to model the in-
completeness and incorrectness of a Bayesian network
with noisy-or/and nodes. A leak node is a source in
the graph added as an extra input to a node in order
to represent a possible unknown cause. Banner diag-
noses faults in a network by temporarily instrumenting
each node with leak nodes that indicate potential re-
vision points. It then uses training data to select a
small set of revision points and construct appropriate
re�nements.

2.1 Selecting Revision Points

The procedure for instrumenting a network with leak
nodes is best illustrated with an example, such as that
shown in Figure 1 (A{G are the original nodes). Each
noisy-or/and has an added parent called a node-leak

node. In order to avoid signi�cantly altering the se-
mantics of the net, the prior of the leak node and its
link parameter are initially set very low. However,
when the algorithm detects misclassi�cations, it re-
estimates the prior probabilities by training a copy of
the network augmented with leak node-leak nodes us-
ing the parameter revision module. All of the orig-
inal noisy-or (noisy-and) nodes also have their par-
ents routed through an intervening noisy-and (noisy-
or) node. The intervening nodes themselves have at-
tached leak nodes called link-leak nodes. To avoid al-
tering the semantics, the weights on the links are set
to simulate logical functions and the prior probability
of the link-leak node is set to the weight on the origi-
nal link. The leak nodes e�ectively represent possible
faults in the theory, with node-leak nodes representing
the need for new inputs to a node, and link-leak nodes
representing the need for new intervening hidden vari-
ables between two nodes.

Once the network is properly instrumented, Banner
performs abduction on each misclassi�ed example to
generate a set of repairs that could correct the ex-
ample. This involves instantiating both the evidence
and the target variables in the augmented network to
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Figure 1: Augmenting a network with leak nodes

their observed values and inferring the beliefs asso-
ciated with the leak nodes using standard Bayesian
inference. For each misclassi�ed example, it collects a
set of leak nodes, whose beliefs deviate from their prior
probability by more than 10%. Such leak nodes are
said to cover the example, and indicate potential revi-
sion points in the theory. When the belief in the truth
of a leak node decreases from its prior, it is called an
inhibitor for that example; if it increases, it is called
an enabler. Each leak node covering an example is
associated with the degree to which its belief devi-
ated from its prior, indicating the extent to which it is
blamed for the misclassi�cation. Once leak nodes are
collected for all misclassi�ed examples, Banner uses
a greedy set covering algorithm (where the contribu-
tion of each leak node is weighted by its degree) to
generate a small set of leak nodes that cover all of the
misclassi�ed examples. While Banner uses only mis-
classi�ed examples to generate a set of revision points,
it performs abduction on all the examples, generating
leak nodes that are enablers or inhibitors for each ex-
ample. This information is used during the generation
of appropriate revisions.

2.2 Revision Operators

For each revision point in the covering set, Banner
implements one of the following modi�cations to help
correct the misclassi�ed examples covered by the cor-
responding leak node: 1) Add a new parent, 2) Add a
new hidden node, 3) Delete a link. The �rst operator

is invoked when a revision point is a node-leak node,
in which case it adds a new parent to the appropriate
node in the original network. In the example, if G-
leak is a selected revision point, then a new parent is
added to G. The heuristic for selecting the new parent
is discussed below.

If a revision point is a link-leak node, Banner modi-
�es the corresponding link. One option is to introduce
a new hidden variable with an additional parent and
the same type as the corresponding intervening node.
In the example, if E-A-leak is the revision point, a new
noisy-or node is added between E and A (see Figure 2).
The rationale for such a revision is that the previous
step of abduction with the augmented network indi-
cated that such a structure would better explain the
misclassi�ed data.

However, in some cases, the problematic link is simply
deleted. For example, if E-A-leak is an enabler for sev-
eral examples but never an inhibitor, the link may be
deleted to correct the misclassi�ed examples without
a�ecting other examples since the link is e�ectively an
always-true input to a noisy-and which therefore has
no e�ect. A dual argument can be made for noisy-or
nodes. A link is also deleted if, when a hidden node
is added, the chosen parent has the same e�ect as link
deletion. For example, if the negation of A is chosen
as the new parent of E-A, the link between E and A

is deleted.

New parents are selected based on the examples for



Given: An initial network, and a set of training data. Output: A revised network.
1. Initialize the parameters of the network either randomly or based on some prior knowledge.
2. Repeat steps a-e until there is no improvement in training accuracy over a pre-speci�ed number of

consecutive cycles.
(a) set train-net = initial network.
(b) set leak-net = train-net augmented with node-leak nodes.
(c) Train network train-net to revise parameters.
(d) If the previous step indicates over�tting, or all examples are correctly classi�ed, return train-net.
(e) else

i. Train network leak-net to estimate prior probabilities of the node-leak nodes.
ii. Set augmented-net = train-net augmented with node-leak and link-leak nodes.
iii. Copy priors of leak nodes from leak-net to augmented-net.
iv. For each example,

A. Instantiate input and target nodes of augmented-net with values from the example.
B. Infer beliefs of all the nodes in augmented-net.
C. Collect all enabled and inhibited node-leak and link-leak nodes.

v. Set revision-points = small set of node-leak and link-leak nodes that cover all the misclassi�ed
examples (computed using greedy set covering)

vi. For each revision point in revision-points, revise train-net at the revision point using one of the
revision operators.

Figure 3: Outline of the Re�nement Algorithm
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Figure 2: Revision operator: Adding a hidden node

which the chosen leak-node is an enabler or inhibitor.
The new parent needs to be true for the examples
it must enable and false for the ones it must in-
hibit. Banner uses a standard information gain met-
ric (Quinlan, 1990) to choose a parent that best dis-
criminates between these two sets of examples. This
metric, commonly used in inductive learning algo-
rithms (Mahoney & Mooney, 1994; Quinlan, 1990,
1986), estimates the information gained about a target
function value from knowing the value of an attribute.
Two versions of this metric that are commonly used.
The version used by Quinlan (1990) to learn proposi-
tional Horn-clause theories, is designed to pick a fea-
ture that best discriminates between sets of examples,
with the additional constraint that the feature have

speci�c values (e.g. true or false) for each set of exam-
ples. This version is most appropriate for our theory
re�nement algorithm because we need to select a new
parent that discriminates between the examples that
need an enabling in
uence, and the examples that need
an inhibitory in
uence, with the additional constraint
that the new parent be true for the former set of ex-
amples and false for the latter set of examples.

Suppose that we are given a set of examples, S, of
size N , of which N+ a re positive examples of a given
class C, and N� are negative examples of C. Also as-
sume that all the features in the examples are boolean-
valued. For any given feature F , let Nf be the number
of examples for which F is true; of these let, N+

f be
the number of examples which are positive examples
of C, and N�f be the number of examples which are
negative examples of C. Then, the reduction due to
F in the total number of bits required to encode the
positive members of C is given by

Gain(C;F ) = N+

f � (I(S)� I(Nf ));

where I(S) = � log2

�
N+

N�+N+

�
is the number of bits

required to encode a positive member of class C, and

I(Nf ) = � log2

�
N
+

f

N
�

f
+N

+

f

�
is the number of bits re-

quired to encode the positive members of class C, given
that F is true. The higher the value of this func-
tion, the greater the correlation between the examples
for which F is true and the positive examples of C.
Note that this computation can be easily generalized
to hidden variables and variables with missing values.



Information gain for such nodes can be obtained by
weighting the frequency measures N+

f and N�f by the
degree of belief associated with these nodes for each
example.

So far, we have described this metric with a view to
selecting an enabling parent. The same metric is used
to select an inhibitory parent by de�ning Nf to be the
number of examples for which F is false. Every other
term in the computation of the metric is de�ned as
before. In general, all nodes in the network and their
negations are potential candidates; however, to avoid
redundancy and the introduction of loops, the existing
parents and descendents of the recipient of the new
parent are excluded. Figure 3 shows a summary of the
overall algorithm.

3 Experimental Evaluation

We conducted experiments on realistic problems and
data to demonstrate that Banner is e�ective at re-
vising networks to improve their classi�cation accu-
racy. We also compared its performance to naive Bayes
which learns a simple Bayes net that includes all fea-
tures and assumes conditional independence,2 with
Kbann (Towell & Shavlik, 1994) a neural-network
re�nement method, Rapture (Mahoney & Mooney,
1994) a certainty-factor re�nement method, and with
two standard inductive algorithms: C4.5 (Quinlan,
1993) for decision trees and Backprop (McClelland
& Rumelhart, 1988) for neural networks. In order
to study the contribution of Banner's components,
we also performed ablation studies, where we disabled
parts of the algorithm and compared performance to
the full system. Banner-Ind, is an inductive version
which does not utilize an initial theory but starts with
a default network with input and output variables but
no links, and Banner-Pr (parameter revision), which
uses an initial theory but does not perform structure
revision. Finally, we speci�cally evaluated structure
revision by attempting to �x an arti�cially corrupted
initial theory.

We present results on two molecular biology problems
employed in previous re�nement experiments: recog-
nizing promoters and splice-junctions in DNA strands
(Towell & Shavlik, 1994). These problems include im-
perfect, expert-provided theories represented as propo-
sitional rules. These theories contain fan-ins of up
to 17 inputs, which would require more than 130,000

2Our version includes smoothing with Laplace estimates
which signi�cantly improves performance (Kohavi, Becker,
& Sommer�eld, 1997)

parameters for general nodes, demonstrating the im-
portance of using noisy-or/ands. Here we present the
splice-junction results and results on a corrupted ver-
sion of the promoter theory. Banner also performs
well on revising the original promoter theory, but since
its structure is already adequate, this problem does
not test structure revision. The system also performed
well on revising a knowledge base on C++ program-
ming to model students for an intelligent tutoring sys-
tem (Ba�es & Mooney, 1996). Ramachandran (1998)
presents complete results.

In order to compare to previous results, we generated
learning curves in which the data was randomly split
into independent training and test sets, systems were
trained on the training data, and then tested on classi-
fying the test examples. Results were averaged over 20
random training/test splits. This was done for training
sets with increasing number of examples. A two-tailed
paired t-test is used to evaluate the statistical signif-
icance of di�erences in performance given a speci�c
number of training examples.

3.1 DNA Splice-Junction

This problem addresses the task of detecting splice-

junctions, the boundaries between the utilized and un-
utilized sequences in DNA. The data set consists of
3190 examples consisting of strings of 60 nucleotides
with the values A, C, G, or T, and assigned to three
di�erent categories. The initial theory consists of 47
propositional rules.

Figures 4 shows the primary results and Figure 5 shows
the ablation results. The experiment provides evi-
dence that Banner is successful at improving the ac-
curacy of the initial theory signi�cantly with just a
small number of examples. The accuracy of the initial
theory has risen from 55%, before revision, to 73.6%
when trained on just 20 examples, and to about 91.2%
when trained on 400 examples. The performance of
the three re�nement algorithms Rapture, Banner,
and Kbann are similar, although Rapture performs
slightly better. The di�erences between Rapture and
Banner are small but statistically signi�cant for all
points on the learning curve at the 0.01 level. The in-
ductive algorithms all perform signi�cantly worse for
smaller training sets, although Naive Bayes catches
up with Rapture at 200 examples. The di�erences
between the Banner and Naive Bayes are signi�-
cant at at least the 0.01 level for 20, 50, and 100 exam-
ples, where the former performs considerably better,
at the 0.001 level for 400 examples where it performs
slightly worse.
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Figure 4: Splice-Junction: Performance of Various
Systems

Figure 5 demonstrates that structure revision con-
tributes signi�cantly to Banner's performance on
smaller training sets. Structure revision has con-
tributed to an improvement in accuracy of about 13%
over Banner-Pr for 20 examples (signi�cant at 0.001
level), and an improvement of about 2.8% for 50 ex-
amples (signi�cant at the 0.05 level). The revisions
that contributed the most to this improvement were
deletions of the links between nodes IE and PR, and
nodes EI and P5G. The di�erences between Banner
and Banner-Pr are not statistically signi�cant at the
rest of the points on the learning curve. As expected,
starting out with an initial theory gives Banner a
signi�cant edge over Banner-Ind. The di�erence in
performance between these systems is statistically sig-
ni�cant for all points on the learning curves, except at
100 example, at levels of at least 0.02.

3.2 Evaluation of Structure Revision on

DNA Promoter

In order to more directly study structure revision, an
existing theory with adequate structure was corrupted
and Banner's ability to recover the lost structure was
examined. The DNA promoter recognition problem
involves identifying DNA sequences that indicate the
start of a new gene. Figure 6 shows a portion of the
Bayesian network derived from the initial theory for
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Figure 5: Splice-Junction: Banner Ablations

this problem, The data set contains 468 examples, con-
sisting of strings of 57 nucleotides classi�ed as pro-
moters or non-promoters. Although in re�nement ex-
periments theories are sometimes corrupted randomly
(Pazzani & Brunk, 1993), we found that the redun-
dancy in this theory makes it very robust to small
corruptions. Therefore, we generated a corrupt the-
ory by deleting a portion of the theory we knew to
be critical, namely the intermediate concept minus 35
(deleted portion shown in bold in Figure 6).

Figure 7 shows Banner-Pr and Banner's perfor-
mance with this damaged theory compared to Ban-

CONTACT

MINUS_35

Noisy−And

Noisy−And

PROMOTER

MINUS_35_1MINUS_35_2

(P−36 T)

MINUS_10CONFORM

MINUS_10_3

Noisy−Or

Noisy−And

Noisy−Or

Noisy−Or

Noisy−And
Noisy−And

(P−35 T)

(P−34 G)

(P−33 A)

(P−32 C)

MINUS_10_4

(P−11 A) (P−7 T) (P−12 T)

Noisy−And

Figure 6: DNA Promoter Recognition - Initial
Bayesian Network
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moter theory

ner's performance with the original theory. The graph
shows that removing minus 35 degrades the theory to
the extent that, for most points in the learning curve,
parameter revision alone cannot recover the accuracy
attained with the original theory. The results shows
that, for larger training sets, structure revision is ef-
fective at recovering a fair bit of the accuracy lost
due to the corruption, although the di�erence between
Banner-Pr and Banner is only signi�cant (at the
0.05 level) at 400 examples.

The fact that Banner and Banner-Pr result in com-
parable accuracies for smaller training sets can be ex-
plained by the fact that none of the trials with 10 and
20 training examples, and less than half the trials with
50 examples required structure revision. Notice that
the corrupted theory results in better networks than
the original when trained on 10 examples. With 20
and 50 examples, the corrupted theory is still usually
able to �t the training examples without structure re-
vision, but results in poorer generalization. This leads
to the hypothesis that, for smaller training sets, there
are several theories that are as good as the original the-
ory in �tting the training set, but are worse in terms
of generalization, which would partially explain the
observation that structure revision leads to improved
training accuracies without any improvements in gen-
eralization, when trained on 50 and 100 examples.
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Figure 8: Example of a revised promoter network

Figure 8 illustrates a revised network. The nodes and
links added by Banner are indicated by shaded el-
lipses and bolder arrows and the numbers beside the
links represent parameter values. Note that some
nodes have been replicated in the �gure for clarity
only. Banner added several features to the network:
P-35=T, P-36=T, P-34=G, P-33=A and P-3=A and
added new links from features already present in the
network: P-11=A, and P-10=A. In addition, it has
added three hidden variables, I-1 through I-3. A com-
parison with the original theory indicates that the
added unit I-1 roughly corresponds to the deleted
minus 35 concept. However, in the original the-
ory, minus 35 combines conjunctively with minus 10,
whereas, here it combines disjunctively. That could
explain why Banner also added some of these fea-
tures to the sub-network above minus 10 4. However,
realize that the initial theory is not known to have
the correct structure, it is simply one proposed in the
biological literature that is also consistent with the
available data. Also, note that the modi�cations to
the network are not con�ned to any particular level
(as they are in Mahoney and Mooney (1994)).

In summary, our experiments demonstrate that Ban-
ner is e�ective in revising an Bayesian networks with
hidden variables to signi�cantly improve their accu-
racy. They also demonstrate that the structure revi-
sion algorithm contributes signi�cantly to the overall
algorithm and makes semantically interpretable revi-
sions. The e�ectiveness of the structure revision al-
gorithm is also illustrated by the fact that Banner-
Ind learns highly accurate classi�ers. Experiments
have also been performed that show that Banner-
Ind learns more accurate classi�ers that Naive Bayes
on the problem of classifying chess end-games (Quin-
lan, 1983). Ramachandran (1998) provides details on



these results.

4 Related Work

While recent techniques have begun to address the
problem of learning the structure of a Bayesian net-
work from incomplete data (Ramoni & Sebastiani,
1997; Friedman, 1997), only a few address the prob-
lem of learning or revising networks with hidden vari-
ables. MS-EM (Friedman, 1997) extends EM to learn
the structure as well as the parameters of a network
from incomplete data. While it works when the ini-
tial theory contains hidden variables, it cannot con-
struct new hidden variables. Kwoh and Gillies (1996)
present a procedure for adding hidden variables by
�rst learning a Bayesian network from data without
hidden variables, and then using statistical analysis to
�nd correlations between variables with the same cause
and clustering such variables with a new hidden node.
These techniques have been demonstrated on learning
small networks, but have not been evaluated on larger,
real-world problems. Moreover, it has no mechanism
for selecting a candidate set of nodes that need to be
revised, instead relying on blind search through the
space of all possible revisions.

5 Future Research

Experiments on other realistic problems, particularly
ones in which the initial theory is speci�ed as a
Bayesian network (rather than translated from rules),
is one area for future research. The current results for
Banner involve problems of causal inference, tests on
tasks involving abductive inference are also needed.
More detailed comparisons of di�erent Bayes-net in-
duction and revision algorithms and competing meth-
ods on realistic problems measuring both training time
and predictive accuracy are clearly needed. The cur-
rent literature on Bayes-net learning is particularly
lacking in this regard relative to other areas of ma-
chine learning (Friedman, Goldszmidt, Heckerman, &
Russell, 1997).

Extending Banner's general approach to handle
nodes other than noisy-or/and ones is an important
area for future study. Another is theory re�nement
for unsupervised learning where there is not a speci�c
targeted inference task. The algorithm can also be ex-
tended to use Bayesian metrics to select new nodes to
be added to the parent set of a node. A number of
interesting ideas for learning and revising Bayes nets
have been proposed, but integrating them into an ef-

�cient and e�ective system with clearly demonstrated
advantages over other machine-learning methods on
realistic problems is still a challenge.

6 Conclusion

We have introduced a novel technique for revising
Bayesian networks that can handle existing hidden
variables as well as create new ones. We have demon-
strated, through experiments on realistic problems,
that this approach can e�ciently revise large networks
and produce highly accurate classi�ers. The results
are also competitive with those of the best theory re-
�nement systems while maintaining the precise proba-
bilistic semantics of Bayesian networks that we believe
make the resulting theories signi�cantly more com-
prehensible. Whereas existing techniques for revising
Bayesian networks must search through the space of
all possible revisions, we have presented novel mech-
anisms for using the information in the data to guide
the search for useful revisions, thus focusing the search
and making it tractable for larger, more realistic prob-
lems.

7 Acknowledgements

We are grateful to Bobby Blumofe, Lorenzo Alvisi,
Mike Dahlin, Calvin Lin and other folks at the UT
LESS lab for letting us use their computing facilities
for this research. The multiprocessor computing facil-
ities in this lab were made available through a gener-
ous equipment donation from Sun Microsystems. This
research was partially supported by the National Sci-
ence Foundation through grants IRI-9310819 and IRI-
9704943.

References

Ba�es, P. T., & Mooney, R. J. (1996). A novel application
of theory re�nement to student modeling. In Pro-
ceedings of the Thirteenth National Conference on
Arti�cial Intelligence, pp. 403{408 Portland, OR.

Brunk, C., & Pazzani, M. (1995). A lexically based se-
mantic bias for theory revision. In Proceedings of the
Twelfth International Conference on Machine Learn-
ing, pp. 81{89 San Francisco, CA. Morgan Kaufman.

Buntine, W. (1991). Theory re�nement on Bayesian net-
works. In Proceedings of the Conference on Uncer-
tainty in Arti�cial Intelligence, pp. 52{60.

Friedman, N., Goldszmidt, M., Heckerman, D., & Russell,
S. (1997). Challenge: What is the impact of Bayesian
networks on learning?.. pp. 10{15 Nagoya, Japan.



Friedman, N. (1997). Learning belief networks in the pres-
ence of missing values and hidden variables. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, pp. 125{133 Nashville, Ten-
nessee. Morgan Kaufmann Publishers.

Friedman, N., & Goldszmidt, M. (1996). Building classi-
�ers using Bayesian networks. In Proceedings of the
Thirteenth National Conference on Arti�cial Intelli-
gence, pp. 1277{1284.

Heckerman, D. (1995). A tutorial on learning Bayesian
networks. Tech. rep. MSR-TR-95-06, Microsoft Re-
search, Redmond, WA.

Kohavi, R., Becker, B., & Sommer�eld, D. (1997). Improv-
ing simple Bayes. In Proceedings of the European
Conference on Machine Learning.

Kwoh, C.-K., & Gillies, D. (1996). Using hidden nodes in
Bayesian networks. Arti�cial Intelligence, 88 (1-2),
1{38.

Lam, W., & Bacchus, F. (1994). Using new data to re-
�ne a Bayesian network. In Proceedings of the Con-
ference on Uncertainty in Arti�cial Intelligence, pp.
383{390.

Mahoney, J. J., & Mooney, R. J. (1994). Comparing meth-
ods for re�ning certainty-factor rule bases. In Pro-
ceedings of the Eleventh International Conference on
Machine Learning, pp. 173{180 New Brunswick, NJ.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations
in Parallel Distributed Processing: A Handbook of
Models, Programs, and Exercises. The MIT Press,
Cambridge, MA.

Mitchell, T. (1997). Machine Learning. McGraw-Hill, New
York, NY.

Mooney, R. J. (1997). Integrating abduction and induction
in machine learning. InWorking Notes of the IJCAI-
97 Workshop on Abduction and Induction in AI, pp.
37{42 Nagoya, Japan.

Opitz, D. W., & Shavlik, J. W. (1993). Heuristically ex-
panding knowledge-based neural networks. In Pro-
ceedings of the Thirteenth International Joint Con-
ference on Arti�cial Intelligence, pp. 512{517 Cham-
berry, France.

Ourston, D., & Mooney, R. J. (1994). Theory re�nement
combining analytical and empirical methods. Arti�-
cial Intelligence, 66, 311{344.

Pazzani, M., & Brunk, C. (1993). Finding accurate fron-
tiers: A knowledge-intensive approach to relational
learning. In Proceedings of the Eleventh National
Conference on Arti�cial Intelligence, pp. 328{334
Washington, D.C.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, Inc., San Mateo,CA.

Pradhan, M., Provan, G., Middleton, B., & Henrion, M.
(1994). Knowledge engineering for large belief net-
works. In Proceedings of the Conference on Uncer-
tainty in Arti�cial Intelligence, pp. 484{490 Seattle,
WA.

Provan, G. M., & Singh, M. (1994). Learning Bayesian
networks using feature selection. In Proceedings of
the Workshop on Arti�cial Intelligence and Statis-
tics, pp. 291{300 New York. Springer-Verlag.

Quinlan, J. R. (1983). Learning e�cient classi�cation pro-
cedures and their application to chess end games. In
Michalski, R. S., Carbonell, J. G., & Mitchell, T. M.
(Eds.), Machine Learning: An Arti�cial Intelligence
Approach. Morgan Kaufmann, Los Altos, CA.

Quinlan, J. R. (1986). Induction of decision trees. Machine
Learning, 1 (1), 81{106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo,CA.

Quinlan, J. (1990). Learning logical de�nitions from rela-
tions. Machine Learning, 5 (3), 239{266.

Ramachandran, S. (1998). Theory Re�nement of Bayesian
Networks with Hidden Variables. Ph.D. thesis, Uni-
versity of Texas, Austin, TX. Also appears as Ar-
ti�cial Intelligence Laboratory Technical Report AI
98-265 (see http://www.cs.utexas.edu/users/ai-lab).

Ramachandran, S., & Mooney, R. J. (1996). Revising
Bayesian networks parameters using backpropaga-
tion. In International Conference on Neural Net-
works: Plenary, Panel and Special Sessions, pp. 82{
87 Washington D.C., USA.

Ramoni, M., & Sebastiani, P. (1997). Learning Bayesian
networks from incomplete databases. In Geiger, D.,
& Shenoy, P. (Eds.), Proceedings of the Thirteenth
Conference on Uncertainty in Arti�cial Intelligence.
Morgan Kaufmann Publishers, Inc.

Russell, S., Binder, J., Koller, D., & Kanazawa, K. (1995).
Local learning in probabilistic networks with hidden
variables. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Arti�cial Intelligence, pp.
1146{1152 Montreal, Canada.

Thiesson, B. (1995). Accelerated quanti�cation of Bayesian
networks with incomplete data. In Fayyad, U. M., &
Uthurusamy, R. (Eds.), Proceedings of the First In-
ternational Conference on Knowledge Discovery and
Data Mining, pp. 306{11. AAAI Press.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based
arti�cial neural networks. Arti�cial Intelligence, 70,
119{165.


