Automatic, Intelligent Commercial SSA Sensor Scheduling

AMOS 2019 September, 2019

Presented by: Dick Stottler
stottler@StottlerHenke.com
650-931-2714
Overview

Project Goals
Covariance/Complementary Observations/Experiment Results
Commercial SSA Sensors/Capabilities/Advantages
Space Application Scheduling Background
Bottleneck Avoidance Algorithm Applied to Space Applications
Commercial SSA Sensor Scheduling Experiments/Results
Unified Data Library (UDL) Integration
Future Work
Conclusions
Project Goals

Ultimately provide best SSA info from large # of commercial sensors
Determine beneficial use cases
Work out integration mechanisms
Develop commercial SSA sensor optimization algorithm
 • Variety of use cases and time scales
 • 24-hour schedule
 • Catalog Maintenance
 – Maintaining orbital parameters
 – Searching for new objects
 – Finding newly lost objects
 • Space Object Identification (SOI) Information
 • Quick Reaction, i.e. tens of seconds to a few minutes

Determine capabilities/capacities of SSN Sensors
Covariance/Complementary Observations

Radar and optical covariance examples

Combining covariances at a very acute angle.

Plus nonlinear orbital propagation

Combining covariances from orthogonal measurements
Experiment Results: 3x reduction in location errors

Spatial Covariances 3x better, Standard deviations 7x better

<table>
<thead>
<tr>
<th>3160 Deep Space Objects Final 10 Day Position/Velosity Variances</th>
<th>Prototype Average</th>
<th>Current Method Average</th>
<th>Current/Prototype</th>
<th>Prototype Std Deviation</th>
<th>Current Std Dev.</th>
<th>Current/Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (km)^2</td>
<td>3.36</td>
<td>14.43</td>
<td>4.3</td>
<td>3.26</td>
<td>45.27</td>
<td>13.9</td>
</tr>
<tr>
<td>Y</td>
<td>3.66</td>
<td>14.39</td>
<td>3.9</td>
<td>8.04</td>
<td>45.32</td>
<td>5.6</td>
</tr>
<tr>
<td>Z</td>
<td>3.11</td>
<td>8.08</td>
<td>2.59</td>
<td>4.46</td>
<td>21.32</td>
<td>4.8</td>
</tr>
<tr>
<td>Vx (km/s)^2</td>
<td>0.00148</td>
<td>0.00577</td>
<td>3.88</td>
<td>0.00130</td>
<td>0.00662</td>
<td>5.1</td>
</tr>
<tr>
<td>Vy</td>
<td>0.00151</td>
<td>0.00577</td>
<td>3.82</td>
<td>0.00131</td>
<td>0.00662</td>
<td>5.1</td>
</tr>
<tr>
<td>Vz</td>
<td>0.00141</td>
<td>0.00566</td>
<td>4.01</td>
<td>0.00130</td>
<td>0.00662</td>
<td>5.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>674 GEO Final 10 Day Position/Velocity Variances.</th>
<th>Prototype Average</th>
<th>Current Method Average</th>
<th>Current/Prototype</th>
<th>Prototype Std Deviation</th>
<th>Current Std Dev.</th>
<th>Current/Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (km)^2</td>
<td>4.95</td>
<td>29.73</td>
<td>6.0</td>
<td>2.17</td>
<td>72.60</td>
<td>33.5</td>
</tr>
<tr>
<td>Y</td>
<td>5.22</td>
<td>27.82</td>
<td>5.3</td>
<td>4.31</td>
<td>67.74</td>
<td>15.7</td>
</tr>
<tr>
<td>Z</td>
<td>4.13</td>
<td>9.17</td>
<td>2.22</td>
<td>5.78</td>
<td>16.11</td>
<td>2.8</td>
</tr>
<tr>
<td>Vx (km/s)^2</td>
<td>0.00191</td>
<td>0.00807</td>
<td>4.23</td>
<td>0.00228</td>
<td>0.00732</td>
<td>3.2</td>
</tr>
<tr>
<td>Vy</td>
<td>0.00193</td>
<td>0.00806</td>
<td>4.17</td>
<td>0.00229</td>
<td>0.00735</td>
<td>3.2</td>
</tr>
<tr>
<td>Vz</td>
<td>0.00168</td>
<td>0.00783</td>
<td>4.66</td>
<td>0.00231</td>
<td>0.00734</td>
<td>3.2</td>
</tr>
</tbody>
</table>

X-Y Covariances 5-6x better, Standard deviations 25x better
Commercial SSA Sensors Capabilities

Gov. will not directly use comm. SSA sensor data in its orbital parameter calculations (each SSN sensor must be certified, for now) but some government tasking is:

- Searching for lost objects, providing orbital params for SSN gov. sensors to re-acquire
- Searching volumes of space for new objects
- Other Tipping and cueing
- On the fly (short lead-time items) tasking (which could be volume/time based)
- High priority objects (could be volume/time based, to avoid classification issues)
- Maneuver detection / Propulsion Detection
- Post-Launch Observations

Unclassified sensors could occasionally be tasked with Classified objects

Space Object Identification (SOI): Images, Light Curves (to derive rotational and other movement frequencies), and Passive RF Signals and their Timing

Track Maintenance for low priority, unclassified objects, e.g. debris and commercial and university satellites
Commercial Sensor Advantages

1000+ telescopes/sensors across 100+ sites: persistent GEO and LEO coverage
Immediately responsive (tens of seconds to a few minutes)
Real-time data: see what’s happening in GEO in real-time (5 minutes after tasking)
Very low $/observation or $/FOV; great $ efficiency
Subscription model – continuous improvement in accuracy and info. extraction
No requirements so didn’t stop when they were met
Extracting the maximum information angles/brightness/dim objects
Observe behaviors (including light curves) can tell if 3-D stabilized/spin stabilized/tumbling
Burns and burn size, Slot changes, Catastrophes, Objects deployed from satellites (or broken off)
Help operators locate satellites in response to immediate requests
Observe anomalous satellites in response to immediate requests
Want the space object observation data, not to acquire/own/maintain sensors
Space Application Scheduling
Very easy to build bad scheduler, hard to build good one

Scheduling with resource assignment is NP Complete (exponential time)
- Takes exponential time to guarantee an optimal solution
- (4 meaningful options per each choice)\(^{1000}\) Decisions
- \(4^{1000} = 2^{2000} = 10^{200} >> 10^{80} = \# \text{ particles in the universe}\)

Can’t guarantee optimal solution, every scheduling algorithm is different and produces different answers, some good, some bad, some fast, some slow, slow not necessarily producing better schedules

Search Alg.: Genetic Algs, Sim. Annealing, A*, Heuristic Search, Iterative Repair
Operations Research: Linear Programming, Branch and Bound, Hill-Climbing, Mixed Integer, Usually these must oversimplify the problem

Common Bad Algorithm: Priority Order, Greedily Pick Resource
- Other ways to guarantee high priority tasks, e.g. swap out lower Priority at the end

Near Linear Algorithms (Global Info./Visual Cortex) vs Search vs OR
Bottleneck Avoidance Algorithm Motivation

Human experts are currently very successful at building highly optimal schedules

Very specialized: requires lots of training and experience

Building a schedule manually requires a great deal of time and effort

Opportunity: apply automated techniques that mimic experts’ processes and leverage existing knowledge
Bottleneck Avoidance Overview

Goal: schedule the least flexible tasks first; leave room for more flexible tasks to schedule later

Track the actual allocations of scheduled tasks and the probabilistic allocations of unscheduled tasks

At each scheduling step, find “bottlenecks” – spots with the greatest resource contention

Schedule tasks away from these peaks to reduce contention
Predicting the Allocation of an Unscheduled Task

Inflexible task (e.g., LEO): one possible assignment with 100% probability

Flexible task (MEO/GEO): 10 possible assignments, each with 10% probability
Predicting the Allocation of an Unscheduled Task (continued)

Very flexible tasks never reach 100% probability (20 possible allocations, each at 5%)

Calculate a trapezoid for each task
Divide across all possible resources (4 possible resources = 25% to each)
Probabilistic Bottleneck Model

First step: Sum the predicted allocation for all tasks

Simple example using three tasks. Blue is fixed in time (LEO support). Red and green are more flexible (MEO/GEO support).
Schedule Processing Order

BA is a one-pass algorithm without backtracking
The order in which tasks are processed is *very* important
Schedule an inflexible task early because, otherwise, its required resources may be allocated to a different task
Each step attempts to reduce bottlenecks (peaks of predicted resource contention)

To find the next task to schedule:
1. Find the tallest predicted usage peak or bottleneck that has at least one unscheduled task
2. Find the unscheduled task that contributes the most to the peak (the task that is most likely to schedule there)
Processing Order Example

1. Tallest Peak
 Largest Contributor

2. Tallest Peak
 Largest Contributor

3. Tallest Peak
 Largest Contributor

4. 15
Temporal Allocation and Resource Selection

Once a task is selected for processing, scheduling involves:

1. Finding an open combination of resources that satisfies the task’s requirements
2. Allocating the task temporally on those resources

Bottleneck Avoidance attempts to minimize resource contention at each step

Schedule a task away from bottlenecks, such that its new allocation minimizes all peaks
Comm. SSA Sensor Sched. Experiments/Results

Appears to Produce Optimal Results
Determine Single Observation Persistence
 • 4 & 8 min (LEO/nonLEO) observations
 • 17,000+ TLEs, 528 sensors/93 sites/1.5M Visibilities
 • 2.5 minutes (single threaded Java on desktop) scheduling -> all tasks scheduled
 • 8/16 min. obs, vast majority scheduled

Algorithm Runtime Reductions:
 • Parallelize Java on desktop: 1 minute
 • Single Thread C++: < 1 minute
 • Optimize single thread C++: 8 seconds
 • Parallelize optimized C++: 4 seconds

Press Commercial Capacity (3 obs):
 • 17K TLEs, 52K tasks/1.5 Vizs/2-4 & 4-6 min observations
 • Observations separated by > 4 hours
 • 4 seconds scheduling -> 99% tasks scheduled

Quick Reaction:
 • 100 new immediate requests added to above 52K schedule
 • All rescheduled within 0.1 seconds (1 millisecond each)
 • 33% bumped tasks rescheduled within 23 milliseconds
Unified Data Library (UDL) Integration

UDL is a central repository of SSA data
UDL jointly funded by AFRL/CAMO and SMC/DPMO
Increase exposure of commercial space data
Enable access to academic, gov. and commercially-gathered satellite data sets
Variety of data access methods (batch, query, streaming, archive)
Most commercial SSA sensor data providers represented
Access to commercial observations is dependent on data purchases or affiliation to an effort that has purchased data
Streamlines data distribution and data integration for end users or applications
Can add specifically assigned tasks in real-time for real-time monitoring/execution by commercial SSA sensor owners
Combined with SMC’s SSA marketplace will enable real-time transactions & distribution of data. SSA marketplace will be online Fall of 2020
Future Work

More diverse tasking (e.g. searching, SOI, sensor quality)
More testing with more diverse realistic scenarios
Improved deliberate and quick-reaction algorithms
Integrate Current/Forecast Weather
UDL Integration
Government agency querying capability
Satellite Constellation Scheduling
 • ISR Collections
 • Support Communications
Conclusions

Commercial SSA Sensors are quite numerous and capable and constantly improving

Commercial SSA Sensors offer near-real-time tasking and data/visualization

Commercial SSA sensor data are readily available

High quality space scheduling algorithms exist to quickly take full advantage of SSA Sensors