
 1

Training Benefits of Java-Based Part Task Trainers:
Lessons Learned from MH-60S/MH-60R Helicopter

Training

Robert A. Richards Jeremy Ludwig
Stottler Henke Associates, Inc. (SHAI) Stottler Henke Associates, Inc. (SHAI)

San Mateo, CA 94404, U.S.A. San Mateo, CA 94404, U.S.A.
IEEEAero2008.R.RichardsPhD@Neverbox.com

Abstract—The US Navy’s PMA-205 in conjunction with
Stottler Henke has re-designed and re-implemented the
partial task trainer (PTT) for the Common Cockpit of the
new MH-60S and MH 60R helicopters. The tool, called the
Operator Machine Interface Assistant (OMIA), is an
expandable, easily modifiable low-cost PC-hosted desktop
crew trainer. OMIA-JAVA is currently in use for training at
HSC-3 and HSM-41 at NAS North Island and HSC-2 at
Norfolk NAS; and is continuing to evolve to match the
changing helicopters.

OMIA is now implemented in Java and can be run on
NMCI (Navy/Marine Corps Intranet) computers. This new
implementation allows the software to have all the benefits
of a ‘portableapp’, and a web-based application. OMIA-
Java can be delivered as a Java web-start application or
users can download a simple zip file. The contents of the zip
file are extracted and then the product can be run directly on
the user’s computer without any further installation or
administrator privileges (aka a ‘portableapp’). This allows
the software to run on any Windows machine that already
has a Java virtual machine installed, such as standard NMCI
computers. This also allows OMIA-Java to run from
external USB “thumb drives”.

Formerly, OMIA was used in dedicated classrooms and on
personal machines. In both cases, administrator access was
required to install OMIA. However, most aviators have
access to NMCI computers everywhere they go so this is the
most convenient platform to deliver to. Many training
solutions have utilized a web-based solution to provide
ubiquitous access, but many applications suffer performance
problems because they’re running over the web. This paper
demonstrates the benefits of developing training or other
software in the same manner as OMIA is developed so that
it is easily available and efficient; as well as describes some
of the most recent advances to OMIA .1 2

Another major benefit of recasting OMIA as a Java program
is the relative ease of creating and modifying user interfaces
to match the evolving helicopter interface. Code reuse was
also an influencing factor as the latest version of OMIA-
JAVA needed to be client/server based and Stottler Henke

1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 IEEEAC paper #1064, Version 1, Updated January 15, 2008

already had an extensible body of code to provide this
functionality as part of the SimVentive product. So in less
than six months a new version of OMIA-Java was created
that matches the current interfaces of the helicopters while
supporting all of the original OMIA-functionality that took
several years to develop.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. OMIA-JAVA CONFIGURATIONS 3
3. OMIA AS PORTABLE & WEB APP 4
4. MISSION AVIONICS SYSTEMS TRAINER (MAST) 5
5. ENHANCEMENTS ... 5
6. CONCLUSION... 6
REFERENCES... 6
BIOGRAPHY .. 7

1. INTRODUCTION

The US Navy has introduced two new helicopters, the
MH-60S and MH-60R, see Figure 1. Both of these
helicopters utilize Lockheed-Martin’s Common Cockpit
design. The Common Cockpit includes all the flight and
mission instrumentation in both of the helicopters and
enables both the pilot and co-pilot to share workload
through dual flight and mission instrumentation, see Figure
2. As can be seen in Figure 2 the pilot and copilot each have
two LCD screens, one of which is the Mission Display
(MD) and the other is the Flight Display (FD). The pilots
interact with these displays primarily through a set of bezel
keys around each display and a keypad located in the center
console. This keypad contains a set of fixed function keys
(FFK), a set of context-dependent programmable keys (PK),
and a small joystick known as the “hook”. For more than
seven years the US Navy's PMA-205 in conjunction with
Stottler Henke has developed/deployed/updated a flexible,
low-cost PC-hosted crew trainer for the Navy’s new MH-
60S (Sierra) and MH-60R (Romeo) helicopters called the
Operator Machine Interface Assistant (OMIA-JAVA).
Until 2007 this software was written mostly in C++, which
had been the best language for the challenges. A description
of the C++ version is provided by in [1] & [2]. However,
due to various circumstances OMIA was converted to Java
in 2007.

 2

Figure 1. MH-60S

OMIA-JAVA has core functionality that may be enhanced
via optional software and hardware. The core of OMIA-
JAVA provides a partial-task trainer (PTT) of the helicopter
software and hardware. The trainer includes the flight and
mission displays as well as the programmable & fixed
function keypads, the hook, and the RCU (Radio Control
Unit), CMP (Control Monitor Panel), and CCU (Cockpit
Control Unit) panels.

OMIA-JAVA is currently in use by HSC-3 and HSM-41 at
NAS North Island and HSC-2 at NAS Norfolk, as well as
being available to anyone in the Navy with a PC. This paper
describes why it became beneficial to convert OMIA-JAVA
to Java in order to increase its capabilities, and flexibility.
There were 4 main driving factors that lead to the decision
to convert to Java:

1) Continual helicopter software updates that require
corresponding updates to OMIA-JAVA,

2) Java version of DiSTI libraries that are used for
parts of the user interface and cockpit,

3) NMCI compatibility,

4) Need for a client server version of OMIA-JAVA to
support multiple seats and multiple helicopters
working together.

Continual helicopter software updates: The flexible design
for evolving requirements is necessary because the Common
Cockpit has and continues to evolve. Even though the MH-
60S and MH-60R both use the Common Cockpit, the
helicopters have different capabilities and missions, thus
many operations are different on the two platforms.
However; a programmable keyset (PK) supports the

differences. In addition, the software for the two platforms
is not at the same version. The Navy supports these
differences in OMIA-JAVA. Since this process will be
continuing for years it is always best to have the software in
the most flexible language for this task. Advances in the
Java language and Java tools have now made it a better
choice for rapid modification.

OMIA-JAVA has been able and must continue to work with
and control Microsoft™ Flight Simulator when it is
available, to use COTS and/or custom hardware when
attached, and to still function as a complete standalone
application. In addition, the C++ version of OMIA-JAVA
software was the software component of the MH-60S
Mission Avionics Systems Trainer (MAST), this has been
replaced by the Java version

Java version of DiSTI libraries: The option to go to Java
was facilitated when DiSTI released a Java version of their
tools that is used in part of OMIA-JAVA. Without this
option, the rest of OMIA-JAVA could have been converted
to Java and some of its benefits could have been realized but
it would still not be able to run on NMCI machines.

NMCI compatibility: One of OMIA-Java’s goals has always
been its availability on as many computers as possible both
on land and at sea. Thus even though it can be enhanced by
optional hardware and MS Flight Simulator, a very
functional standalone version has always been available.
The default computer configuration in the Navy is referred
to as NMCI (Navy/Marine Corps Intranet). These have
restricted access and certain aspects of the C++ version of
OMIA-JAVA could not be used easily on NMCI machines,
including DiSTI’s libraries. But once Java versions became
available, NMCI compatibility could be provided.

Need for a client server version: Besides OMIA-JAVA
keeping up with the helicopters’ changes, OMIA-JAVA is

Figure 2. Common Cockpit

 3

constantly being enhanced. One of the recent enhancements
is the client-server design change so that multiple users of
OMIA-JAVA can interoperate. That is, OMIA-JAVA can
be run by multiple users, so that a set of users can match
different seats in one helicopter, and multiple helicopters
can also be handled so everyone is playing in the same
world. The change was simplified because Stottler Henke
already had a general client-server capability built into one
of its Java based tools. This was leveraged in the OMIA-
JAVA Java version..

2. OMIA-JAVA CONFIGURATIONS

As mentioned above, OMIA-Java has many configurations.
The core OMIA-Java is a standalone Java program that
operates under any standard Windows 2000 or Windows XP
computer that includes a Java Runtime Environment (JRE);
this includes NMCI computers. The standalone OMIA-Java
provides an introduction to the Common Cockpit, including
the Mission Display, the Flight Display, the Center
Console’s Fixed Function and Programmable Keys, and the
CMP, RCU & CCU units. The CCU, alternately known as
the Head-Mounted Display Control Unit, is currently only
available on the Sierra so this panel is only available on the
Sierra.

A major benefit of the standalone core OMIA-Java product
that the Navy requires is that it requires no external
licensing, and therefore it can be distributed freely to
anyone in the US Navy via CD or via the Web.

The core OMIA-Java can be used to teach both the Sierra
and Romeo versions of the helicopter. A different
executable is created for each configuration (presently one
for the MH-60S and two for the MH-60R since the R has a
back seat Sensor Operator). In addition, the user can also
run in standalone mode (the default) or in network
configuration. In a network configuration, in which one
operator can be the pilot and another operator can be the co-
pilot or sensor operator. In this scenario, both operators will
see the same world, including changes made by each other.
To do this, you have to state whether you are the server or
the client. The first person to start OMIA-Java has to be the
server so that the second person can designate himself as the
client and the program will search for a server for them to
join on the network. To start in network (client/server) mode
the OMIA-Java executable is started with the –multi option.

If optional hardware is attached OMIA-Java and Windows
discovers it and works correctly with it automatically. The
simplest example is multiple monitors, by attaching two
displays the Mission Display, shown in Figure 3 and the
Flight Display, shown in Figure 4, can be displayed on
separate monitors, with one of the monitors also displaying
the Center Console. Another option is to have one or more
of the screens made a touch screen as is done in the Mission
Avionics System Trainer (MAST), described below, in
which the bezel keys on the flight display and mission

display are operated using finger pushes on a touch screen
to more accurately emulate the ergonomics of the actual
helicopter. Of course, the third screen containing the Center
Console panels could also be a touch screen so the user
could push the buttons in a more similar way as is done in
the aircraft instead of using the mouse.

Figure 3. Mission Display with Menu Displayed

Figure 4. OMIA-JAVA Flight Display

At this time, software additions for OMIA-Java consist only
of Microsoft Flight Simulator. Every time OMIA-Java starts
it checks to see if Microsoft Flight Simulator is already
running. If it is running, OMIA-Java attaches itself to
Microsoft Flight Simulator and then gets its position, speed
and other flight information from Microsoft Flight
Simulator. In this configuration, the user could have the
external view being completely generated by Microsoft
Flight Simulator, and the Flight Display, Mission Display

 4

and all of the other panels still being used from the core
OMIA-Java. However; any other information such as
ground speed, latitude/longitude location, or motion is all
being read in from Microsoft Flight Simulator. This is very
beneficial if you wish to fly or see the terrain while
navigating a search and rescue pattern. As one navigates, the
helicopter may be guided along the search and rescue
pattern on the Mission Display, and as search and rescue
points are reached or captured the pattern will update
appropriately. When using Flight Simulator, other hardware
can be used if desired. One can plug in a joystick, or a head
mounted display with head tracking can be added to
improve the means for emulating the full field of view. Both
options are handled seamlessly by OMIA-Java and
Microsoft Flight Simulator.

Flying can be performed solely using a joystick; or a
joystick and a separate control for the collective, or COTS
pedals could be added. Microsoft Flight Simulator also
provides an automatic pilot, as well as the Slew Mode, so
one can move the helicopter without having to concentrate
on the flying. Since the flying performance will not actually
be realistic for an MH-60S or MH-60R helicopter, it is
normally better to use the Slew Mode. This feature allows
for moving the helicopter in any desired direction without
having to fly a helicopter whose characteristics are not
going to match the exact characteristics of the actual
helicopter. More information on the details of interfacing
with Microsoft Flight Simulator is provided in [1].

A two seat simulator, the Mission Avionics Systems Trainer
(MAST) essentially combines all the above mentioned
capabilities that can be added to the core OMIA-Java. The
MAST is further described in a section below.

3. OMIA AS PORTABLE & WEB APP

A portable application, or ‘portableapp’ is a software
program that does not require any kind of formal installation
onto a computer's permanent storage device to be executed,
and can be stored on a removable storage device such as a
CD-ROM, USB flash drive, flash card, etc., this enables it
to be used on multiple computers. The portableapp reads its
configuration files from the same storage location as the
software program files.
Most software for Microsoft Windows is not portable,
because they use the Windows registry, etc. That is, if one
installs an application that is ‘installed’ in a folder and one
copies the folder to another computer, usually the software
will not run on the second computer (where in contrast a
portableapp would).

By making OMIA-Java a portable application, the Navy
receives many benefits. (First a caveat, since OMIA is
written in Java in some regards it is NOT completely
portable because there needs to be a Java Runtime
Environment (JRE) on the computer that OMIA runs on.
The JRE is freely available and many machines already

include it, including all NMCI machines. However, the
default JRE is not portable. However, there is work in
making a portableapp JRE. For the rest of this discuss
OMIA Java will be referred to as a portableapp.)

A major advantage that has already proved itself very
valuable is the ease of distribution and ‘installation’. Since a
portableapp does not require formal installation it can be
used directly from the distribution media as long as the
media is writable. That is, USB drives can be plugged in
and the OMIA-Java software can be run directly from the
USB drive. This is not the case for a CD disk, since the disk
is read only. However, in both cases the OMIA directory
can be simply copied to anywhere on the computer and then
run from the location on the computer. This has made
distribution to training classrooms trivial compared to the
previous C++ OMIA that required an installer. Automating
the installation on a large number of computers was
difficult, resulting in a delay in the distribution of OMIA
C++ updates. The new process is simply a directory copy.
In addition, the OMIA-Java directory can simply be placed
on a network drive that all the computers can see and run
from the network drive. Running from a network drive has
resulted in slower start-up times but once loaded the
software’s responsiveness is about the same as running
locally.

NMCI compatibility, as already mentioned, is a huge
advantage provided by OMIA-Java being a portableapp.
Previously, users would have to go to a lab when they
wanted to utilize OMIA even though most have an NMCI
computer at their desk. There is a huge convenience factor
in making OMIA-Java available at a user’s desk.

Portableapps provide essentially all the advantages of WEB-
based applications, plus something that a WEB-based
applications don’t or can not. Since a portableapp runs
locally it is (almost always) much faster than a WEB-based
application. In addition, the portableapp (in installed locally
or on a USB drive) is available even when the internet is
not.

Another advantage of OMIA being written in Java is that it
could be run as a Java web-start application. That is, not
only is OMIA-Java a portableapp, it is also a small task to
make it a WEB-based application. Due to the many
advantages of being a portableapp, there has been no need to
make it a web-start application.

A final advantage of the new OMIA-Java is that if it needs
to be ported to another platform (e.g., Linux) , it is written
in Java, a language that allows for the easiest portable across
different operating systems. Presently there is no desire on
the part of the Navy to have OMIA run on any other
platform.

 5

4. MISSION AVIONICS SYSTEMS TRAINER
(MAST)

The MAST, as shown in Figure 5, includes actual hardware
in the Center Console that is exact aircraft hardware or a
very close facsimile. The MAST hardware was procured by
the Navy from JF Taylor, Inc. One can actually push
physical buttons, change actual knob positions, feel
feedback, open covers, etc. There are two seats, the pilot
and co-pilot. Each seat has two screens just as in the
helicopter, one for the Flight Display and one for the
Mission Display. There are individual screens for the pilot
and co-pilot showing the outside view, generated by
Microsoft Flight Simulator. There is a simple cyclic in the
MAST and the screens for the Flight Display and Mission
Display are actual touch screens. Another feature of the
Center Console hardware is the actual hook hardware, used
to control the cursor in the Mission Display.

 Figure 5. Mission Avionics System Trainer (MAST)

The MAST is a medium resolution trainer driven
completely by OMIA-Java software and MS FS software.
Again, there is only one version of OMIA-Java, it can work
with or without MAST hardware. The MAST can be used
for many different types of operations, including
coordinated operations because, as described above, the two
seats can be used independently; or in conjunction
(client/server mode) so the pilot and co-pilot are flying the
same mission. The MAST has been in use for a couple of
years at HSC-3 at NAS North Island and another MAST is
available at HSC-2 at NAS Norfolk. They are mainly used
for Sierra training; however, since they are being completely
driven by OMIA-Java software, they can be quickly
reconfigured as Romeo stations via restarting the programs
in Romeo mode.

5. ENHANCEMENTS

OMIA-Java continues the earlier history of OMIA, where
each version not only continued to match the evolving
helicopter software, but functionality is expanded. OMIA-
Java has added a FLIR (Forward Looking Infrared) The
FLIR is an external hardware unit, see Figure 6 that
provides an infrared view of the exterior on the mission
display.

Figure 6. FLIR Hardware

The FLIR user mainly controls the FLIR operations via a
Hand-Control Unit (HCU), as shown in Figure 7. The Navy
has developed a portable HCU that uses the actual
helicopters HCU, but connects to a USB controller with a
USB connector. This portable training HCU has been
interfaced to OMIA-Java.

 6

Figure 7. FLIR Hand Control Unit (HCU)

OMIA-Java reacts the same way to the HCU hardware as it
does to the presence/absence of other hardware units; when
OMIA-Java starts up it detects if the FLIR HCU hardware is
attached. If it is attached, the software will read input from
it, if it is not detected a software equivalent is provided.

An example of a FLIR image, with the MH-60 overlay, as
shown on a Mission Display is shown in Figure 8. The
generation of FLIR images is a difficult task in real-time.
Usually FLIR simulators are very expensive units
incorporated into multi-million dollar simulators. For
OMIA a simpler solution is created to provide a high level
of learning benefit without the cost. Actually there are two
solutions, for maximum flexibility for the Navy.

Figure 8. FLIR Image

The simpler solution uses a 2D FLIR image and runs
completely in the stand-alone OMIA-Java. Much of the
learning related to FLIR concerns the operation of the FLIR
menus and other operations that are part of the overlay. So
the combination of the actual FLIR HCU and the overlay

menus and other functions, a great deal of learning is
facilitated.

A more complete solution with the ability to fly in a three-
dimensional FLIR environment is created via MS Flight
Simulator. A small FLIR world has been created in MS
Flight Simulator, that includes an island with bunkers and
tanks, as well as some ships offshore. A simulated FLIR
image is shown in Figure 9; this solution allows the user to
experience most aspects of utilizing FLIR before using more
expensive simulator or real flight time.

Figure 9. Simulated FLIR Image

6. CONCLUSION

The complexity and number of the sensors under control of
the crew on the MH-60S and MH-60R helicopters pose a
difficult training task for the Navy. To meet this challenge
the US Navy's PMA-205 in conjunction with Stottler Henke
and various hardware vendors has developed and deployed
OMIA, a flexible, low-cost PC-hosted desktop crew trainer.
OMIA has evolved with the changing helicopter software, in
addition it has become an ever more functional trainer with
each iteration. The latest version of OMIA was refactored
and converted from C++ to Java. This latest version opens
up OMIA to run on just about any Navy PC since it
functions on the NMCI PCs which are the default computer
provided to Navy personnel. OMIA is available for anytime
training on both land and at sea. To learn more regarding the
past, present and future of OMIA, please visit the project
web page at www.StottlerHenke.com/OMIA.

REFERENCES

[1] Richards, R., J. Ludwig (2007) "PC Rapid Modification
Tool for Aircraft Experimentation & Training for the
MH-60S/MH-60R Helicopters", 2007 IEEE Aerospace
Conference Proceedings. 2007 IEEE Aerospace
Conference Proceedings. Big Sky, Montana, March 4-9,
2007.

 7

 [2] Ludwig, J. (2006). Comparing helicopter interfaces with
CogTool. 7th International Conference on Cognitive
Modeling, Trieste, Italy.

BIOGRAPHY

Robert Richards, Ph.D. is the
Principal Scientist and Manager of
Stottler Henke’s Navy helicopter
training contract, OMIA-JAVA.
OMIA-JAVA is a PC-based desktop
training system that teaches
crewmembers the Navy’s new MH-60R
and MH-60S helicopter. Dr. Richards
has taken the project from a Research
and Development SBIR project to a
deployed training tool that has been awarded a $4.1 million
IDIQ contract. Dr. Richards received his Ph.D. from
Stanford University in mechanical engineering with an
emphasis on machine learning and artificial intelligence. Dr.
Richards is managing and has managed multiple projects for
both commercial and government clients, including various
intelligent-tutoring-system-based training projects. He is the
principle investigator for VERTICAL, a Navy project to
develop an innovative analytic test tool that can be used to
support vertical takeoff and Visual Landing Aid analysis
and testing. He was also the PI for INCOT, an Air Force
project that developed automated tools for network layout.
These projects exemplify his wide range of research and
application area interests, including: training system
development; applying automation and artificial intelligence
techniques; and decision support tool development for life-
critical situations. Dr. Richards has publications in all these
areas.

Jeremy Ludwig is the technical lead
on the OMIA-JAVA project. He
holds a Master’s Degree in Computer
Science, with a concentration in
Intelligent Systems, from the
University of Pittsburgh and a
Bachelor of Science Degree in
Computer Science with minors in
Psychology and Philosophy from
Iowa State University. Other projects
he has been involved with recently include the SimBionic
behavior modeling framework and the SimVentive
instructional game toolkit.

