Intelligent Resource Scheduling for Reduced Turnaround Durations

Rob Richards, Ph.D.
Stottler Henke Associates, Inc.
Background & Perspective

Stottler Henke

• Artificial Intelligence Research & Development
 – Software Company
• Video: Project Management Experience
• Large organizations developing and building complex systems rely on schedules and project management.

• Many CPPM projects are resource constrained (in reality, even if not modeled that way)

• Resource constraints (e.g., labor, space, equipment) greatly complicates the scheduling problem.
 – Hence a ‘reason’ to ignore
Where in the PM Space?

• Project Management
 – ...
 – Critical Path (Resource Constrained)
 • ...
 • Scheduling / Level Resources
 ↔
 • ...
 – ...

sto2010
Planning Model

WBS

Tasks

Network Diagram

Duration

Initial Schedule

Estimating

Tasks

Resource Definition

Resource Pool

Costs

Allocate Resources

Schedule Network

Leveled Schedule

Budget

Cash Flow

Baseline

Tasks

Copyright © 2010 Nicklas, Inc. All rights reserved.

Scheduling Background / Comparisons

- Resource-Constrained Scheduling is NP-Complete, takes exponential time for optimal solution
 - I.e., it is a hard problem
 - Approximate methods are needed

- Most automatic scheduling systems use simple one-pass algorithms

- Standard constraint-based approaches are far less computationally efficient (Aurora takes advantage of structure of scheduling problems and heuristics)
Why Important? / Motivation

• So much work is put into developing project plan before hitting the schedule / Level Resources … button

Days, Weeks, Months

• What if your resulting schedule is 10% longer than it needs to be because of the scheduling engine?

• Would you care?
How about 25+% longer?
Motivation: Visual

• Following figure shows.
 – Critical Path
 – Resource Constrained Critical Path (theoretically correct)

• The goal is the shortest correct schedule
Scheduling Engine Comparison
Construction Examples

(Kastor & Sirakoulis, 2009)

<table>
<thead>
<tr>
<th>Product</th>
<th>1st Example</th>
<th></th>
<th>2nd Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration</td>
<td>Deviation from CPM (%)</td>
<td>Duration</td>
<td>Deviation from CPM (%)</td>
</tr>
<tr>
<td>Primavera P6</td>
<td>709</td>
<td>52.8</td>
<td>308</td>
<td>29.41</td>
</tr>
<tr>
<td>MS Project</td>
<td>744</td>
<td>60.34</td>
<td>314</td>
<td>31.93</td>
</tr>
<tr>
<td>Open Workbench</td>
<td>863</td>
<td>85.99</td>
<td>832</td>
<td>249.58</td>
</tr>
</tbody>
</table>
Different Resource-Leveling Techniques

• Deviation from Critical Path Duration
Benefits of Sophisticated Underlying Scheduler

- Results in a better **initial** schedule

- **Execution**: Schedule is more flexible and better able to accommodate change.
 - Schedule is “self-aware” of what tasks can most easily be moved. I.e., tasks store information about what placed it where it is placed.
 - Quickly reschedule as if resources on late task are not available until after its estimated end time.
Maybe Only for ‘Big’ Problems?

• Let’s look at a toy problem …
• ‘Simple’ problem with only 7 real tasks and 2 milestones.
‘Simple’ Network details

• Number superscript of circle is duration in days
• Number subscript of circle is resources needed
• There is only 1 type of resource
Critical Path of Network

• Solution when infinite resources available
 – Find longest path = 1 + 1 + 5 = 7
• So Critical Path is 7 days
Gantt Chart of Critical Path

- Note: Sat/Sun are not workdays
Set Resource Pool to 5

- Only one type of resource to make the problem ‘simple’
Gantt Chart Showing the Critical Path & Histogram

- Note: now some resources are overloaded
- Resource level to solve over allocation
Resource-Leveled in MS Project = 9 days

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessors</th>
<th>Resource Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0 hrs</td>
<td>Sat 11/1/08 12:00 AM</td>
<td>Sat 11/1/08 12:00 AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>8 hrs</td>
<td>Mon 11/3/08 8:00 AM</td>
<td>Mon 11/3/08 5:00 PM</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>T2</td>
<td>16 hrs</td>
<td>Fri 11/7/08 8:00 AM</td>
<td>Mon 11/10/08 5:00 PM</td>
<td>1</td>
<td>A[200%]</td>
</tr>
<tr>
<td>T3</td>
<td>32 hrs</td>
<td>Mon 11/3/08 8:00 AM</td>
<td>Thu 11/6/08 5:00 PM</td>
<td>1</td>
<td>A[200%]</td>
</tr>
<tr>
<td>T4</td>
<td>24 hrs</td>
<td>Mon 11/3/08 8:00 AM</td>
<td>Wed 11/5/08 5:00 PM</td>
<td>1</td>
<td>A[200%]</td>
</tr>
<tr>
<td>T5</td>
<td>8 hrs</td>
<td>Thu 11/6/08 8:00 AM</td>
<td>Thu 11/6/08 5:00 PM</td>
<td>2</td>
<td>A[200%]</td>
</tr>
<tr>
<td>T6</td>
<td>40 hrs</td>
<td>Fri 11/7/08 8:00 AM</td>
<td>Thu 11/13/08 5:00 PM</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>T7</td>
<td>24 hrs</td>
<td>Fri 11/7/08 8:00 AM</td>
<td>Tue 11/11/08 5:00 PM</td>
<td>5</td>
<td>A[200%]</td>
</tr>
<tr>
<td>T8</td>
<td>0 hrs</td>
<td>Thu 11/13/08 5:00 PM</td>
<td>Thu 11/13/08 5:00 PM</td>
<td></td>
<td>7,8,3,4</td>
</tr>
</tbody>
</table>

[Diagram of Gantt chart showing task dependencies and durations]
Simple Enough, Right?

- Another view of the solution
But there is a better solution ...

P6 Model: Resource Leveled = 8 days
Simple?

- Critical Path = $1 + 1 + 5 = 7$
- 1 resource
- 5 total units
End of Story… Not quite

• There is an even better solution
• 7 days
• So this ‘simple’ problem could not even be solved well by the world’s ‘premier’ project management tools.
• Can you solve this ‘simple’ problem in 7 days?
Constraints Add Complexity

• Technical constraints (E.g., F-S, F-F, S-F, lags)

• Resource constraints
 – Labor constraints
 – Equipment, Tools (e.g., cranes)

• Usage constraints – e.g., tool can only be used for so many hours continuously &/or during a day.

• Spatial constraints – e.g.,
 – job requires a certain location or type of space;
 – two elements should (or should not) be next to each other

• Ergonomic constraints – individual limitations on work conditions
Visualizing More Complex Situations

• No good methods shown to date
• Closest way is by similar problems
 – E.g., Tetris game, Tetris cube
Tetris

• Shapes similar to resource profile of individual tasks

• Holes when playing Tetris represent resource allocation inefficiencies.
 – E.g., black regions in figure to the right

• Try www.FreeTretris.org for yourself.
Tetris Cube

• More realistic to scheduling multiple types of resources per task is the Tetris Cube

• If not pieced together properly then will not fit in box.

• Video
Refinery Turnaround Leveraging Intelligent Scheduling Technology
Turnaround Project Network 2,500+ Tasks
Results: 2,500+ Turnaround

• Primavera P6 67.125 days
 – Performed by 3rd party
• Aurora 56.27 days
• Primavera P6 19.3% longer than Aurora
• Critical Path is 46 days
 – P6 is 21.125 days longer than CP
 – Aurora is 10.27 days longer than CP
 – So % diff over CP is > 100%
Long-Term Refinery-Related Upgrade

MS Project 2007 = 1,627 days
Primavera P6 = 1,528 days
Primavera P3 = 1,258 days
Intelligent scheduling (Aurora) = 1,240 days
300 Task Example: Aerospace Application

Multiple Resource Types Needed for Most Tasks

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.00</td>
<td>1000</td>
<td>4000</td>
</tr>
</tbody>
</table>

Note: The above table represents a simplified view of the task example. Actual task details and resource types would be more extensive and complex.
300 Task Example: Network in Aurora
Results: 300 Task Example

- MS Project 2003 145.6 days
- MS Project 2007 145.6 days
- Primavera P6 115 days
 - Performed by 3rd party
- Deltek Open Plan 110 days
- Aurora 102.5 days
Results

• Multiple sources reveal the effect of the Scheduling Engine

• For larger projects (>1,000): Aurora has been able to find project durations **SIGNIFICANTLY** shorter than other software for the same data set.

• Much of the potential improvement offered by modeling resources is being squandered.

• Resource leveled schedules are sub-optimal
Planning & Execution

• Initial Schedule benefits
• Execution benefits even MORE
 – If scheduler is inefficient, every delay will be magnified because re-allocation of resources will be deficient
Benefits of Sophisticated Underlying Scheduler

• Results in a better initial schedule

• **Execution**: Schedule is more flexible and better able to accommodate change.

 – Schedule is “self-aware” of what tasks can most easily be moved. I.e., tasks store information about what placed it where it is placed.
Analogy: Chess

- Chess mathematically is similar to resource loaded scheduling.
 - Easy: Create basic rules to play
 - Hard: Win against other intelligent players

- Resource Leveling in most software is analogous to 'Easy' chess solution

- Each move analogous to execution mode update, challenge continues throughout game/plan
Take Aways

• Scheduling engine is critical
• Paying up to 100% penalty due to the scheduling engine
• Changing to an improved scheduling engine is probably the greatest potential improvement available to your project
 – Just press a different button
• Use more than 1 scheduling engine
Rob Richards, Ph.D.
Stottler Henke Associates, Inc.
richards@stottlerhenke.com